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Abstract

This paper deals with the static analysis of homogenous isotropic rectangular plates on Winkler foundation on

the basis of ®rst-order shear deformation theory. An improved di�erential quadrature (DQ) method, called the
di�erential quadrature element method (DQEM), has been developed for this analysis. The plates considered are
subjected to a patch load or a concentrated line load, which are not solvable by the global DQ method. The

convergence and comparison studies are carried out to establish the reliability of the DQEM results. Then the
numerical results for di�erent boundary conditions (i.e. SSSS, CCCC, S 'S 'S 'S ' and SFSF) are presented showing
the parametric e�ects of dimensions of loading area/line, relative thickness ratio and elastic foundation modulus on
the de¯ection, bending and twisting moments, and shear forces at selected locations. Most of these data are new

and due to the high accuracy of the DQ solution they can be useful for benchmarking future work. # 1999 Elsevier
Science Ltd. All rights reserved.

1. Introduction

Among the various thick plate theories available today, the most widely used thick plate theory is the
®rst-order shear deformation theory, which was ®rst proposed by Reissner (1945), and developed further
for dynamic problems by Mindlin (1951). A number of analytical and numerical methods for the
rectangular thick plates resting on an elastic foundation have been reported based on Reissner's plate
theory (Frederick, 1957; Voyiadjis and Baluch, 1979; Svec, 1976) and Mindlin's plate theory (Kobayashi
and Sonoda, 1989; Liew et al., 1996). Frederick (1957) presented an analytical solution using the Navier-
type and Levy-type series method. Voyiadjis and Baluch (1979) proposed an approximate approach for
solving a simply supported rectangular plate on Winkler foundation. Kobayashi and Sonoda (1989)
presented a Levy-type solution for the rectangular plates on Winkler foundations with two opposite
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simply supported edges, and two other edges being arbitrarily restrained. Svec (1976) studied the similar
problem by the ®nite element method. Malik et al. (1993) obtained the solution of uniformly loaded
circular plates resting on elastic half space using the di�erential quadrature method. Liew et al. (1996)
presented a di�erential quadrature solution to the rectangular Mindlin plates on Winkler foundation
with arbitrary combinations of boundary conditions. Moreover, the static analysis of rectangular plates
with elastic foundation based on other re®ned plate theories can also be found in literature (Henwood et
al., 1981, 1982; Yettram et al., 1984; Voyiadjis and Kattan, 1986).

All the above solutions, however, are restricted to plates subjected only to a uniformly distributed
load over the entire plate surface. Solutions to the thick plates with elastic foundations and subjected to
a patch load or a concentrated line load are scare in the open literature. Voyiadjis and Kattan (1990)
derived the governing equations for non-symmetrical bending of thick plates on elastic foundations
based on a re®ned plate theory. An in®nite thick plate subjected to line and concentrated loads was
analyzed. However, this analytical solution is only applicable to very special cases. Even in the case of
the uniform loading on the entire surface of plate, the solutions are only possible for plates with two
opposite edges simply supported. Canisius and Foschi (1993) treated the similar problem by using the
®nite strip method. Feng and Owen (1996) developed an iterative scheme for the coupled FE/BE
analysis of a plate±foundation interaction problem. A rectangular plate which freely rests on an elastic
half-space foundation and is subjected to a point load is examined. This iterative scheme can be done
within an integrated FEM/BEM software environment formed by merging the FEM and BEM
programs. However, the overall performance of the scheme depends largely on the choice of a free
parameter a and a matrix KL contained in the scheme. The approach on how to determine the optimal
value of a was not given in the paper. No other solutions have been found on the thick plates on
Winkler foundations involving the patch loading or concentrated loading. In particular, the results
presented by Liew et al. (1996) have shown that the di�erential quadrature method is highly e�cient
and accurate for solving the bending problems of thick rectangular plates on Winkler foundation. This
numerical method was originated by Bellman and Casti (1972, 1973), and thanks to the e�orts of Bert et
al. (1988, 1989), Striz et al. (1988) and Sherbourne and Pandey (1991), it is becoming increasingly
popular in the structural mechanics ®eld (Liew and Liu, 1998; Liu and Liew, 1998a±b, 1999a±c). A
notable review paper on both the theoretical development and the application of the DQ method has
been published by Bert and Malik (1996). Unfortunately, however, this numerical method, by its very
basis, is only applicable to problems which should satisfy the continuity conditions (Striz et al., 1994;
Chen et al., 1997a, b; Bert and Malik, 1996). It can not be employed directly to solve the thick plates on
elastic foundation subjected to a patch load or other discontinuous loading conditions. Striz, Chen and
Bert developed the quadrature element method (QEM) to solve the bending of truss and beam (Striz et
al., 1994) and free vibration of thin plate (Chen et al., 1997a, b) having discontinuities and obtained
excellent solutions for these problems, but no solution has been provided for thick plates with
discontinuities. Han and Liew (1996) developed an improved technique, called the di�erential
quadrature element method (DQEM) for one dimensional bending analysis of the axisymmetric circular
Mindlin plate. Wang and Gu (1997) also developed one dimensional di�erential quadrature element
method (DQEM) for the thick beam analysis. Recently, Liu and Liew developed the two-dimensional
DQEM for static analyses of rectangular thick plates (Liu and Liew, 1998b) and discontinuous polar
plates (Liu and Liew, 1999b). Further, the method has been developed for the solution of free vibration
problems of the discontinuous shear deformable plates (Liu and Liew, 1999c). The primary objective of
this paper is to develop this methodology for solving the bending problems of thick rectangular plates
on Winkler foundation. The domain decomposition technique is introduced to combine with the DQ
method for this analysis. The methodology developed here is di�erent from the QEM since it is based
on di�erent plate theory with di�erent governing equations and only one grid point is employed to
represent the interface point between elements in which no d-grid arrangement is needed. The static
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responses of the moderately thick rectangular plates on Winkler foundation and subjected to a patch
load or a concentrated line load are carefully investigated for di�erent boundary conditions to reveal the
e�ects of the dimensions of loading area/line, plate thickness and elastic foundation modulus on the
solution values.

2. Mathematical formulations

Consider a rectangular thick plate resting on a Winker foundation with side lengths a� b. The plate
is divided into NE elements based on the discontinuities in the geometry, boundary constraints and
materials used. Each element consists of an isotropic material, has uniform thickness and continuous
boundary constraints on each edge and is subjected to a continuously distributed load. For the lth
element, the thickness of the plate, Young's modulus, shear modulus, Poisson's ratio, and the load
intensity are represented by hl, El, Gl, vl and ql respectively.

2.1. Basic equations

For a given element l as shown in Fig. 1, the equilibrium equations of a thick plate on Winkler
foundation are given in terms of the displacement components and based on the ®rst-order shear
deformation plate theory as follows (Kobayashi and Sonoda, 1989):

Dl
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�1ÿ vl�r2cx � �1� vl � @f
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ÿ kGlhl
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�
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Fig. 1. Arrangement of grid points for element l on elastic foundation.
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w is the transverse de¯ection; cx and cy are the rotations of the normal about the y-axis and x-axis
respectively; kf is the elastic foundation modulus; Dl is the plate ¯exural rigidity and k �� 5=6� is the
shear correction factor.

The moments and shear forces are expressed as
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The boundary conditions for the sides of a rectangular plate can be divided into four kinds. Taking
side x= 0 for example, the boundary conditions are expressed as

1. Generalized hard simply supported sides (S):

w � 0, cy � 0, Mx �
ÿ
Mext

x

�
1
; �6�

2. Generalized soft simply supported sides (S '):

w � 0, Mxy � 0, Mx �
ÿ
Mext

x

�
1
; �7�
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3. Clamped sides (C):

w � 0, cx � 0, cy � 0; �8�
4. Generalized free sides (F):

Qx �
ÿ
Qext

x

�
1
, Mx �

ÿ
Mext

x

�
1
, Mxy � 0 �9�

where �Mext
x �1 and �Qext

x �1 are the concentrated external line moments and loads at the side x= 0.

2.2. Rectangular DQEM plate element on elastic foundation

Further dividing the lth element into Nx �Ny grid points along the x- and y-axis respectively and
applying the DQM rule (Liew et al., 1996), the equilibrium eqns (1a)±(1c) can be discretized at each
discrete point on the inner grid of the element l as
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i � 1, 2, 3, . . . , Nx; j � 1, 2, 3, . . . , Ny; Ny, l � 1, 2, 3, . . . , NE �10c�
where Fl � 6k�1ÿ v2l �=h2l ; C �n�rs and �C

�n�
rs �r � 1, 2, 3, . . . , Nx; s � 1, 2, 3, . . . , Ny� are the weighting coe�cients

for the nth-order partial derivatives of w, cx and cy with respect to the global coordinates x and y.
At the four edges of element l, the governing eqns (10a)±(10c) should be replaced by the boundary

conditions or compatibility conditions. If the edge is located at the sides of the plate, the boundary
conditions (6)±(9) are used, otherwise, the compatibility conditions should be employed.

The matrix form of eqns (10a)±(10c) can be written as

Kede � fe �11�
in which Ke, de and fe are de®ned as the element weighting coe�cient matrix, element displacement
vector and element force vector, respectively, and
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j � 1, 2, . . . , Ny� are the combinations of the external forces and moments applied at the four edges of
element l, and the shear forces and moments produced by adjacent elements. The expressions of these
forces and moments are determined by the compatibility conditions given in Section 2.3. The coe�cients
in Ke are determined by eqns (10a)±(10c).

2.3. Assembling plate elements and compatibility conditions

An overall system of equations for all the nodal points of the plate labeled 1 to N should be
constructed ®rst in order to obtain a complete solution for the whole plate. This can be simply
accomplished by assembling all the element weighting coe�cient matrices, force and moment vectors
and displacement vectors. The ®nal global matrix form of equation for the whole plate becomes

Kd � F �15�
where K, d and F represent the overall weighting coe�cient matrix, global displacement vector and
global force and moment vector, respectively. The vector d is expressed as
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Obviously, at the interface boundaries of the elements, the displacement compatibility condition is
automatically satis®ed since the same global nodal number is used for each conjunction node. Only the
equilibrium condition is needed to form the compatibility conditions between the interface boundaries of
the DQEM plate elements. Hence, according to the locations of conjunction nodes and the number of
the elements meeting at these nodes, the compatibility conditions are expressed as follows:

1. For nodes at which two elements meet

Suppose elements l1 and l2 are two adjacent elements as shown in Fig. 2(a) and (b). The compatibility
conditions for the conjunction nodes at the interface edge of element l1 and l2 connected in the
x-direction can be written according to the equilibrium condition as
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The compatibility conditions for the conjunction nodes of elements l1 and l2 connected in y direction
can be obtained similarly as�
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2. For nodes at which four elements meet

The compatibility conditions for the common node m of the four arbitrarily selected elements, l1, l2, l3
and l4 as shown in Fig. 2(c) can be expressed asÿ
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Fig. 2. Locations of the conjunction nodes on the interface boundaries of elements: (a ) two elements are connected along x-axis;

(b ) two elements are connected along y-axis; (c ) four elements are connected at point m.
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or expressed in terms of the y-components of force/moments at node m of the four elements in the
similar way.

3. For conjunction nodes located at the boundaries of plate

For the conjunction nodes located at the side boundary of the plate, both the boundary conditions
and the connection conditions should be considered. Take the side boundary x= 0 for example. The
following modi®ed boundary conditions should be used:

. for clamped edge:
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. for hard simply supported edge:
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3. Numerical results and discussion

By assembling all the element weighting coe�cient matrices, displacement and force vectors, and
considering all the compatibility and boundary conditions, a linear algebraic equation system is
obtained. It is solved using the standard linear equation system solver. The grid points are designated as
follows:

xi � a

2

�
1ÿ cos

��iÿ 1�p=�Nx ÿ 1��	; i � 1, 2, 3, . . . ,Nx �24�

yj � b

2

�
1ÿ cos

�� jÿ 1�p=ÿNy ÿ 1
��	

; j � 1, 2, 3, . . . ,Ny �25�

The solution procedures developed here can be employed to solve a variety of thick rectangular plate
problems with discontinuities in loading, geometry, material and boundary conditions. However, in the
following studies, the attention is only paid to the rectangular plates with an elastic (Winkler)
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foundation subject to two loading cases, i.e. a patch load and a concentrated line load. An illustration
of these two loading conditions has been given in Fig. 3(a) and (b) for a simply supported plate. The
number of the elements used in computations is 3 � 3 for the patch loading and 3 � 2 for the
concentrated line loading respectively. The boundary conditions considered are SSSS, CCCC, S 'S 'S 'S '
and SFSF. The notation, for instance, SFSF denotes a rectangular plate with edges x= 0, y = 0, x=a
and y=b having simply supported, free, simply supported and free boundary conditions, respectively.

3.1. Convergence and comparison studies

To examine the validity and accuracy of the DQEM in solution of the problems considered in this
paper, the convergence and comparison studies have been carried out ®rst. Table 1 shows the
convergence properties of the DQEM solution to a simply supported square plate on a Winkler
foundation under a patch load and a concentrated line load for di�erent relative thicknesses. It is
evident that the rapid convergence can be obtained for both the thin (h/a = 0.01) and the thick
(h/a = 0.20) plates. No signi®cant e�ects of the h/a ratio on the convergence rate of the DQEM results
for this plate foundation problem have been found. The convergence of the DQEM results for a square
plate on Winkler foundations with di�erent boundary conditions under a patch load is presented in
Table 2. The grid points in each element are varying from 5 � 5 to 15 � 15. In Table 3, the convergence
of the DQEM results for the same plate subjected to a concentrated line load is illustrated. It is
observed from Tables 2 and 3 that in both loading cases, the DQEM solutions converged very fast with
the increasing number of the grid points in each element for all the boundary conditions considered,
namely the SSSS, CCCC, S 'S 'S 'S ' and SFSF. Generally, for the patch loading, 7 � 7 grid points in each
element are able to produce a converged solution with at least 3 signi®cant digits. When 9 � 9 grid
points are used, a solution converged to at least 4 signi®cant digits can be obtained for all the boundary
conditions considered in Table 2. For the concentrated line loading, the convergence rate is slightly
slower than the one for the patch loading. A converged result to at least 3 signi®cant digits can be
obtained by using 9 � 9 grid points in each element. Also observed is that the convergence rates for
di�erent boundary conditions are slightly di�erent. However, for all cases considered here, a very

Fig. 3. Loading cases considered for a simply supported rectangular plate: (a) subjected to a patch load; (b) subjected to a concen-

trated line load.
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satisfactory solution with the maximum 0.0036% discrepancy from the completely converged results can
be provided using 11 � 11 grid points in each element. Therefore, 11 � 11 grid points will be used for
each element to produce all the numerical solutions in the following studies. To examine the accuracy of
the present solutions, a comparison study has been given in Table 4 for cases in which the exact
solutions are available. Since no exact solutions have been found in the open literature for rectangular
plate with a foundation subjected to a patch load or a concentrated line load, the comparisons are only
conducted for some special cases (e.g., the uniformly loaded plate with Winkler foundation, and the
plate without the foundation but subjected to a patch load or a concentrated line load). The solutions
for these cases, of course, are computed using the same program. Excellent agreement is achieved
between present results and the exact solutions for all cases tabulated in Table 4. The reliability of
present solutions has therefore been con®rmed.

3.2. Parametric studies

Based on the convergence and comparison studies above, the de¯ection, moments and shear forces of
a square plate with Winkler foundation and subjected to a patch load and a concentrated line load are

Table 1

The e�ects of plate relative thickness ratio on convergence of the DQEM results

Loading h/a Grid

pointsa
w�1�

x=a � 0:5
y=b � 0:5

M�2�x
x=a � 0:5
y=b � 0:5

M�2�y
x=a � 0:5
y=b � 0:5

M�2�xy
x=a � 0:0
y=b � 0:0

Q�3�x
x=a � 0:0
y=b � 0:5

Q�3�y
x=a � 0:5
y=b � 0:0

Patch load 0.01 5 � 5 1.72234 2.44889 2.44889 ÿ1.0505 0.08196 0.08196

(u/a=v/b= 0.5) 7 � 7 1.77432 2.48078 2.48078 ÿ1.08827 0.07993 0.07993

9 � 9 1.77460 2.48107 2.48107 ÿ1.08839 0.07992 0.07992

11 � 11 1.77461 2.48110 2.48110 ÿ1.08839 0.07991 0.07991

13 � 13 1.77461 2.48110 2.48110 ÿ1.08839 0.07991 0.07991

15 � 15 1.77461 2.48110 2.48110 ÿ1.08839 0.07991 0.07991

0.20 5 � 5 2.12217 2.40795 2.40795 ÿ1.04108 0.07636 0.07636

7 � 7 2.12997 2.39537 2.39537 ÿ1.04502 0.07617 0.07617

9 � 9 2.13004 2.39565 2.39565 ÿ1.040502 0.07614 0.07614

11 � 11 2.13004 2.39570 2.39570 ÿ1.04502 0.07614 0.07614

13 � 13 2.13004 2.39570 2.39570 ÿ1.04502 0.07614 0.07614

15 � 15 2.13004 2.39570 2.39570 ÿ1.04502 0.07614 0.07614

Line load 0.01 5 � 5 3.73422 8.13628 6.20155 ÿ2.04932 0.00000 0.18546

(v/b= 0.5) 7 � 7 4.12001 9.33740 6.83322 ÿ2.28902 0.00000 0.12818

9 � 9 4.12833 9.36985 6.86977 ÿ2.28500 0.00000 0.13446

11 � 11 4.12844 9.35412 6.85777 ÿ2.28516 0.00000 0.13373

13 � 13 4.12838 9.36044 6.86234 ÿ2.28521 0.00000 0.13393

15 � 15 4.12838 9.36044 6.86234 ÿ2.28521 0.00000 0.13393

0.20 5 � 5 5.28248 8.91742 6.60018 ÿ2.14041 0.00000 0.13325

7 � 7 5.36898 9.14957 6.65354 ÿ2.18868 0.00000 0.12646

9 � 9 5.37051 9.15376 6.67003 ÿ2.19023 0.00000 0.12646

11 � 11 5.37045 9.15332 6.66265 ÿ2.19047 0.00000 0.12626

13 � 13 5.37047 9.15306 6.66614 ÿ2.19053 0.00000 0.12627

15 � 15 5.37047 9.15306 6.66614 ÿ2.19053 0.00000 0.12627

Results are for a simply supported square plate resting on a Winkler foundation under a patch load and a concentrated line load

(K= 3.0, v = 0.3).

For patch loading: (1) qa4 � 10ÿ3=D, �2� qa2 � 10ÿ2, (3) qa; and for concentrated line loading: (1) Q0a
3 � 10ÿ3=D; (2) Q0a� 10ÿ2;

(3) Q0.
a Grid points in each element.
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determined now for di�erent boundary conditions. The boundary conditions considered here include the
SSSS, CCCC, S 'S 'S 'S ' and SFSF. The Poisson's ratio is taken to be v = 0.3 for all cases. Table 5
presents the numerical results at several selected locations of the SSSS square plate with di�erent
relative thickness ratio h/a, non-dimensional elastic foundation parameter K �� a4kf=D� and dimensions
of the loading area u � v. It is observed that the normalized de¯ection, bending moments at the central
point of plate, twisting moment at the plate corner x= 0, y = 0, and shear forces at the mid-edges of
x=a/2 and y=b/2 increase as the dimensions of the loading area u � v increase. When the value of
u � v becomes a � b, the solution becomes the one for the uniformly loaded plate. For the ®xed values
of h/a and u � v, all the normalized de¯ections, moments and shear forces listed in Table 5 decrease as
the non-dimensional elastic foundation parameter K increases from 1.0 to 5.0. The in¯uences of the
relative thickness ratio h/a on the numerical results of the plate are also studied in this table. It is found
that for the ®xed values of K and u � v, the normalized de¯ection increases when the relative thickness
ratio h/a increases from 0.01 to 0.20, whereas the normalized moments and shear forces demonstrate the
di�erent responses for di�erent values of K. When K = 1.0, as the relative thickness ratio h/a increases
from 0.01 to 0.20, all the normalized de¯ections, moments and shear forces remain nearly unchanged.
However, when the value of K increases from 3.0 to 5.0, the values of normalized de¯ections, moments
and shear forces decrease as the relative thickness ratio h/a increases from 0.01 to 0.20. This re¯ects that

Table 2

Convergence of the DQEM results for a square plate with di�erent boundary conditions subjected to a patch load and resting on

Winkler foundation

Boundary

conditions

Grid

pointsa
w�1�

x=a � 0:5
y=b � 0:5

M�2�x
x=a � 0:5
y=b � 0:5

M�2�y
x=a � 0:5
y=b � 0:5

M�2�xy
x=a � 0:0
y=b � 0:0

Q�3�x
x=a � 0:0
y=b � 0:5

Q�3�y
x=a � 0:5
y=b � 0:0

SSSS 5 � 5 1.85069 2.46571 2.46571 ÿ1.06761 0.07936 0.07936

7 � 7 1.86502 2.45903 2.45903 ÿ1.07721 0.07899 0.07899

9 � 9 1.86510 2.45927 2.45927 ÿ1.07731 0.07895 0.07895

11 � 11 1.86510 2.45931 2.45931 ÿ1.07731 0.07895 0.07895

13 � 13 1.86510 2.45932 2.45932 ÿ1.07731 0.07895 0.07895

15 � 15 1.86510 2.45932 2.45932 ÿ1.07731 0.07895 0.07895

CCCC 5 � 5 0.91741 1.70600 1.70600 0.00000 0.13912 0.13912

7 � 7 0.92540 1.68740 1.68740 0.00000 0.13733 0.13733

9 � 9 0.92532 1.68755 1.68755 0.00000 0.13716 0.13716

11 � 11 0.92531 1.68758 1.68758 0.00000 0.13715 0.13715

13 � 13 0.92531 1.68758 1.68758 0.00000 0.13715 0.13715

15 � 15 0.92531 1.68759 1.68759 0.00000 0.13715 0.13715

S 'S 'S 'S ' 5 � 5 1.93344 2.52992 2.52984 0.00000 0.11296 0.11317

7 � 7 1.96513 2.54176 2.54176 0.00000 0.11240 0.11236

9 � 9 1.96693 2.54344 2.54344 0.00000 0.11233 0.11233

11 � 11 1.96704 2.54357 2.54357 0.00000 0.11232 0.11232

13 � 13 1.96704 2.54357 2.54357 0.00000 0.11232 0.11232

15 � 15 1.96704 2.54358 2.54358 0.00000 0.11232 0.11232

SFSF 5 � 5 2.85175 3.16561 1.80407 ÿ0.00069 0.08010 0.00000

7 � 7 2.86039 3.15632 1.79864 0.00002 0.07979 0.00000

9 � 9 2.86045 3.15659 1.79898 0.00000 0.07975 0.00000

11 � 11 2.86045 3.15664 1.79903 0.00000 0.07975 0.00000

13 � 13 2.86045 3.15664 1.79904 0.00000 0.07975 0.00000

15 � 15 2.86045 3.15664 1.79904 0.00000 0.07975 0.00000

(Fig. 1a, K= 3.0, v = 3.0, h/a = 0.1, u/a=v/b= 0.5).

(1) qa4 � 10ÿ3=D, (2) qa2 � 10ÿ2, (3) qa.
a Grid points in each element.
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the shear deformation (corresponding to the increase of the relative thickness ratio h/a from 0.01 to
0.20) exhibits a tendency of enlargement of the de¯ection and reduction of the moments and shear
forces for plates with elastic foundations. And only when the value of non-dimensional elastic
foundation parameter K is big enough (K >1.0), the e�ects of the shear deformation on the moments
and shear forces become signi®cant. The numerical results at several selected locations of the plate for
other boundary conditions such as the CCCC, S 'S 'S 'S ' and SFSF under a patch load are tabulated in
Tables 6±8. The general trends of the variations of the normalized de¯ections, moments and shear forces
with the dimensions of loading area for CCCC, S 'S 'S 'S ' and SFSF plates are similar to the SSSS plate.
However, it is interesting to note that for the SFSF plate, the bending moments at the central point of
plate increase ®rst then decrease as the dimensions of loading area, u � v, increase from 0.2a � 0.2b to
a � b. The e�ects of the shear deformation (corresponding to the increase of the relative thickness ratio
h/a from 0.01 to 0.20) also exhibit a tendency toward enlargement of the de¯ection and reduction of the
moments and shear forces. However, for values of certain elastic foundation modulus K (e.g. for the
CCCC with K = 1.0 and S 'S 'S 'S ' plates with K= 1.0, 3.0), the shear deformation has the e�ect to
increase the moments and shear forces. This observation is in complete agreement with Kobayashi and
Sonoda (1989) for uniformly loaded rectangular plate on Winkler foundation. Tables 9±11 present the

Table 3

Convergence of the DQEM results for a square plate with di�erent boundary conditions subjected to a concentrated load along

x=a � 0:5 and resting on Winkler foundation

Boundary

conditions

Grid

pointsa
w�1�

x=a � 0:5
y=b � 0:5

M�2�x
x=a � 0:5
y=b � 0:5

M�2�y
x=a � 0:5
y=b � 0:5

M�2�xy
x=a � 0:0
y=b � 0:0

Q�3�x
x=a � 0:0
y=b � 0:5

Q�3�y
x=a � 0:0
y=b � 0:5

SSSS 5 � 5 4.25324 8.73081 6.54878 ÿ2.13085 0.00000 0.15403

7 � 7 4.43953 9.30140 6.79667 ÿ2.25916 0.00000 0.13210

9 � 9 4.44214 9.30750 6.81607 ÿ2.26073 0.00000 0.13186

11 � 11 4.44212 9.30625 6.80875 ÿ2.26093 0.00000 0.13195

13 � 13 4.44213 9.30620 6.81213 ÿ2.26100 0.00000 0.13194

15 � 15 4.44213 9.30640 6.81035 ÿ2.26102 0.00000 0.13194

CCCC 5 � 5 2.31011 6.95654 4.97835 0.00000 ÿ3.97147 0.26198

7 � 7 2.42357 7.59865 5.19153 0.00000 ÿ4.46168 0.24209

9 � 9 2.42335 7.60074 5.20495 0.00000 ÿ4.45720 0.24038

11 � 11 2.42292 7.59883 5.19628 0.00000 ÿ4.45512 0.24018

13 � 13 2.42287 7.59870 5.19947 0.00000 0.45473 0.24015

15 � 15 2.42287 7.59889 5.19767 0.00000 ÿ4.45475 0.24015

S 'S 'S 'S ' 5 � 5 4.35769 8.69039 6.49219 0.00000 0.00000 0.22331

7 � 7 4.63582 9.44635 6.92984 0.00000 0.00000 0.20149

9 � 9 4.65758 9.48765 6.98650 0.00000 0.00000 0.20029

11 � 11 4.66104 9.49167 6.98560 0.00000 0.00000 0.20012

13 � 13 4.66150 9.49218 6.98985 0.00000 0.00000 0.20008

15 � 15 4.66153 9.49243 6.98815 0.00000 0.00000 0.20008

SFSF 5 � 5 6.49199 10.3545 5.12423 ÿ0.00336 0.00000 0.15462

7 � 7 6.65321 10.8599 5.32248 0.00310 0.00000 0.13358

9 � 9 6.65472 10.8661 5.34403 0.00037 0.00000 0.13333

11 � 11 6.65469 10.8649 5.33675 0.00009 0.00000 0.13343

13 � 13 6.65470 10.8648 5.34013 0.00005 0.00000 0.13342

15 � 15 6.65470 10.8650 5.33835 0.00002 0.00000 0.13342

(Fig. 1b, K= 3.0, v = 0.3, h/a = 0.1, v/b = 0.5).

(1) Q0a
3 � 10ÿ3=D, (2) Q0a� 10ÿ2, (3) Q0.

a Grid points in each element.
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numerical results of a square plate subjected to a concentrated line load along the central line x= 0.5
under SSSS, CCCC and SFSF boundary conditions respectively. It is evident from these tables that as
the length of the loading line, v, increases from 0.2b to b, the central de¯ection, moment Mx, and shear
forces increase for all these boundary conditions. The moment My at the center of plate, however,
shows a di�erent way of variation. That is, for some values of foundation modulus K and some relative
thickness ratio h/a (for SSSS and CCCC plates, when K= 1.0 or 3.0 and h/a = 0.01, 0.20; and for
SFSF plate, when K= 1.0 and h/a = 0.01), the value of My increases with v, whereas for some other
values of K and h/a, it increases ®rst and then decreases with the increasing value of v. As the relative
thickness ratio h/a increases from 0.01 to 0.20, the central de¯ections for all the SSSS, CCCC and SFSF
plates increase. When K= 1.0, the moment Mx and shear forces for the SSSS and SFSF plates
demonstrate very slight change in values, the moment My for SSSS plate also shows a minimum
variation but for the SFSF plate, My decreases with the increase of h/a. When K= 3.0 and 5.0, all the
moments and shear forces of the SSSS and SFSF plates decrease as the relative thickness ratio h/a
increases from 0.01 to 0.20. For the CCCC plate, the trends of variations of the moments and shear
forces are very similar to those of plate subjected to a patch load. The e�ects of the elastic foundation
modulus K on the de¯ections, moments and shear forces of all the SSSS, CCCC and SFSF plates under

Table 4

Comparison studies of the DQEM solutions with exact solutions for the rectangular plates resting on Winkler foundations under

di�erent loading and boundary conditionsa

K b/a Loading Boundary

conditions

v/b h/a Wc
�Mxc

�Myc
�Qxm

�Mxyl

Patch load

0.0 1.0 (u=v) SSSS 0.2 0.01 0.43493 0.84964 0.84964 0.01667 ÿ0.23875
Exactb 0.43455 0.84697 0.84697 Ð ÿ0.23875

0.5 0.01 2.13348 2.94360 2.94360 0.10196 ÿ1.33495
Exactb 2.13219 2.94504 2.94504 Ð ÿ1.33495

0.8 0.01 3.70586 4.46438 4.46438 0.23808 ÿ2.72893
Exactb 3.70389 4.46731 4.46731 Ð ÿ2.72893

Line load

2.0 (u/a= 0.5) SSSS 0.2 0.01 6.18047 11.0098 6.686762 0.18611 ÿ1.22788
Exactb 6.17553 10.4554 6.63869 Ð ÿ1.22792

0.5 0.01 12.6333 17.9529 8.79775 0.36424 ÿ3.36407
Exactb 12.6274 17.4849 8.69196 Ð ÿ3.36401

0.8 0.01 15.7422 20.8258 8.90832 0.43408 ÿ5.63844
Exactb 15.7353 20.3174 8.73863 Ð ÿ5.63853

Pressure

3.0 1.0 (u/a= 1.0) SCSC 1.0 0.10 1.97589 2.27164 2.94078 0.23064 ÿ0.77942
Exactc 1.976 2.272 2.941 0.231 ÿ0.787

SFSF 1.0 0.10 7.07473 6.29951 1.36490 0.29129 0.00198

Exactc 7.075 6.300 1.366 0.291 Ð

SS 'SS ' 1.0 0.10 3.60326 3.95818 3.90942 0.29615 ÿ0.00134
Exactc 3.603 3.957 3.906 0.296 Ð

a For pach loading: Wc � wc D=�10ÿ3 � qa4�; �Mxc � Mxc=�10ÿ2 � qa2�; �Myc/(10
ÿ2 � qa 2); �Qxm � Qxm/(qa ); �Mxyl �Mxyl/

(10ÿ2 � qa 2); where wc, and Myc are the defection, bending moments at the plate center x = 0.5a, y= 0.5b; Qxm and Mxyl are the

shear force Qx at the mid-side of x= 0 and the twisting moment at the plate corner x = 0, y = 0.

For concentrated loading: Wc � wcD=�10ÿ3 �Q0a
3�; �Mxc �Mxc/(10

ÿ2 � Q0a); �Myc �Myc/(10
ÿ2 � Q0a); �Qxm � Qxm/Q0; �Mxyl �

Mxyl/(10
ÿ2 � Q0a).

b Exact solution obtained by using theoretical formulas based on the classical thin plate theory (Pilkey, 1994).
c Exact solution obtained by Kobayashi and Sonoda (1989) based on the Mindlin plate theory.
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the concentrated line loading conditions are also similar to those under the patch loading conditions. All
the values of these parameters decrease with the increase of K since the elastic foundation becomes sti�er.

4. Concluding remarks

The ®rst known two-dimensional di�erential quadrature element method (DQEM) has been developed
for the static analysis of rectangular thick plates on Winkler foundations based on the ®rst-order shear
deformation theory. The approach developed here is a combination of the di�erential quadrature
technique and the domain decomposition method. The reliability of the DQEM solutions for the title
problem has been examined by the convergence and comparison studies. Very close agreement has been
achieved between present solutions and those obtained using analytical or other methods. The detailed
parametric studies have been carried out for the rectangular plates with di�erent boundary conditions
on Winkler foundations and subjected to a patch load or a concentrated line load. The relations
between the numerical results for the de¯ection, moments and shear forces, and the dimensions of
loading area/line, relative thickness ratio and elastic foundation modulus have been well revealed by all

Table 5

Numerical results for a SSSS square plate subjected to a patch load and resting on Winkler foundation

h/a u=v w�1�

x=a � 0:5
y=b � 0:5

M�2�x
x=a � 0:5
y=b � 0:5

M�2�y
x=a � 0:5
y=b � 0:5

M�2�xy
x=a � 0:0
y=b � 0:0

Q�3�x
x=a � 0:0
y=b � 0:5

Q�3�xy
x=a � 0:5
y=b � 0:0

K= 1.0

0.01 0.2 0.43391 0.84832 0.84832 ÿ0.23806 0.01662 0.01662

0.5 2.12814 2.93673 2.93673 ÿ1.33128 0.10163 0.10163

0.8 3.69622 4.45605 4.45605 ÿ2.72231 0.23743 0.23743

1.0 4.05381 4.77504 4.77504 ÿ3.23825 0.33729 0.33729

0.20 0.2 0.58241 0.84800 0.84800 ÿ0.23790 0.01661 0.01661

0.5 2.64172 2.93515 2.93515 ÿ1.33047 0.10156 0.10156

0.8 4.47511 4.45332 4.45332 ÿ2.72089 0.23731 0.23731

1.0 4.88837 4.77203 4.77203 ÿ3.23906 0.33686 0.33686

K= 3.0

0.01 0.2 0.36624 0.76019 0.76019 ÿ0.19190 0.01252 0.01252

0.5 1.77461 2.48110 2.48110 ÿ1.08839 0.07991 0.07991

0.8 3.05800 3.64019 3.64019 ÿ2.28020 0.19770 0.19770

1.0 3.34854 3.87501 3.87501 ÿ2.74863 0.29323 0.29323

0.20 0.2 0.48386 0.74226 0.74226 ÿ0.18383 0.01184 0.01184

0.5 2.13004 2.39570 2.39570 ÿ1.04502 0.07614 0.07614

0.8 3.55525 3.49464 3.49464 ÿ2.19883 0.19037 0.19037

1.0 3.87274 3.71598 3.71598 ÿ2.65989 0.28463 0.28463

K= 5.0

0.01 0.2 0.18821 0.52321 0.52321 ÿ0.07264 0.00207 0.00207

0.5 0.84766 1.27788 1.27788 ÿ0.45614 0.02371 0.02371

0.8 1.38961 1.51698 1.51698 ÿ1.11909 0.09317 0.09317

1.0 1.50610 1.54013 1.54013 ÿ1.45953 0.17685 0.17685

0.20 0.2 0.25270 0.48459 0.48459 ÿ0.06237 0.00147 0.00147

0.5 0.94597 1.13359 1.13359 ÿ0.39540 0.01911 0.01911

0.8 1.44778 1.31402 1.31402 ÿ0.98973 0.08137 0.08137

1.0 1.55069 1.32770 1.32770 ÿ1.31092 1.6203 0.16203

(v = 0.3; b/a= 1.0).

(1) qa4 � 10ÿ3=D; (2) qa2 � 10ÿ2; (3) qa.
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Table 6

Numerical results for a CCCC square plate subjected to a patch load and resting on Winkler foundation

h/a u=v w�1�

x=a � 0:5
y=b � 0:5

M�2�x
x=a � 0:5
y=b � 0:5

M�2�y
x=a � 0:5
y=b � 0:5

M�2�xy
x=a � 0:0
y=b � 0:0

Q�3�x
x=a � 0:0
y=b � 0:5

Q�3�xy
x=a � 0:5
y=b � 0:0

K= 1.0

0.01 0.2 0.20083 0.63955 0.63955 0.00000 0.03093 0.03093

0.5 0.84922 1.79196 1.79196 0.00000 0.17068 0.17068

0.8 1.23171 2.25508 2.25508 0.00000 0.33738 0.33738

1.0 1.26682 2.28865 2.28865 0.00000 0.43873 0.43873

0.20 0.2 0.35645 0.64648 0.64648 0.00000 0.02198 0.02198

0.5 1.40043 1.82878 1.82878 0.00000 0.12896 0.12896

0.8 2.07494 2.31724 2.31724 0.00000 0.28072 0.28072

1.0 2.16894 2.35299 2.35299 0.00000 0.38175 0.38175

K= 3.0

0.01 0.2 0.19040 0.61726 0.61726 0.00000 0.02856 0.02856

0.5 0.80034 1.68997 1.68997 0.00000 0.15932 0.15932

0.8 1.15706 2.10163 2.10163 0.00000 0.31969 0.31969

1.0 1.18962 2.13024 2.13024 0.00000 0.42031 0.42031

0.20 0.2 0.32825 0.60948 0.60948 0.00000 0.01899 0.01899

0.5 1.26521 1.65830 1.65830 0.00000 0.11374 0.11374

0.8 1.85698 2.04976 2.04976 0.00000 0.25475 0.25475

1.0 1.93792 2.07103 2.07103 0.00000 0.35378 0.35378

K= 5.0

0.01 0.2 0.14237 0.51347 0.51347 0.00000 0.01778 0.01778

0.5 0.57603 1.22110 1.22110 0.00000 0.10733 0.10733

0.8 0.81519 1.40227 1.40227 0.00000 0.23819 0.23819

1.0 0.83615 1.40901 1.40901 0.00000 0.33540 0.33540

0.20 0.2 0.22316 0.46694 0.46694 0.00000 0.00844 0.00844

0.5 0.76897 1.02834 1.02834 0.00000 0.05894 0.05894

0.8 1.06599 1.08969 1.08969 0.00000 0.15871 0.15871

1.0 1.10136 1.06478 1.06478 0.00000 0.24942 0.24942

(v = 0.3; b/a= 1.0).

(1) qa4 � 10ÿ3=D; (2) qa2 � 10ÿ2; (3) qa.
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Table 7

Numerical results for a S 'S 'S 'S ' square plate subjected to a patch load and resting on Winkler foundation

h/a u=v w�1�

x=a � 0:5
y=b � 0:5

M�2�x
x=a � 0:5
y=b � 0:5

M�2�y
x=a � 0:5
y=b � 0:5

M�2�xy
x=a � 0:0
y=b � 0:0

Q�3�x
x=a � 0:0
y=b � 0:5

Q�3�y
x=a � 0:5
y=b � 0:0

K= 1.0

0.01 0.2 0.43150 0.84298 0.84298 0.00000 0.02549 0.02549

0.5 2.12971 2.93571 2.93571 0.00000 0.14754 0.14754

0.8 3.72560 4.48211 4.48211 0.00000 0.31432 0.31432

1.0 4.10868 4.81613 4.81613 0.00000 0.40101 0.40101

0.20 0.2 0.63603 0.89632 0.89632 0.00000 0.02341 0.02341

0.5 2.93557 3.19962 3.19962 0.00000 0.13833 0.13833

0.8 5.03917 4.95894 4.95894 0.00000 0.30551 0.30551

1.0 5.52470 5.34162 5.34162 0.00000 0.41260 0.41260

K= 3.0

0.01 0.2 0.36452 0.75614 0.75614 0.00000 0.01996 0.01996

0.5 1.77552 2.47981 2.47981 0.00000 0.11812 0.11812

0.8 3.07785 3.65609 3.65609 0.00000 0.26038 0.26038

1.0 3.38572 3.89860 3.89860 0.00000 0.34402 0.34402

0.20 0.2 0.51581 0.76993 0.76993 0.00000 0.01660 0.01660

0.5 2.30699 2.54861 2.54861 0.00000 0.10198 0.10198

0.8 3.89942 3.79011 3.79011 0.00000 0.23828 0.23828

1.0 4.26265 4.04989 4.04989 0.00000 0.33786 0.33786

K= 5.0

0.01 0.2 0.18777 0.52185 0.52185 0.00000 0.00569 0.00569

0.5 0.84768 1.27690 1.27690 0.00000 0.04175 0.04175

0.8 1.39336 1.51762 1.51762 0.00000 0.11952 0.11952

1.0 1.51325 1.53869 1.53869 0.00000 0.23382 0.23382

0.20 0.2 0.25680 0.48722 0.48722 0.00000 0.00281 0.00281

0.5 0.97022 1.14891 1.14891 0.00000 0.02663 0.02663

0.8 1.49861 1.34456 1.34456 0.00000 0.09517 0.09517

1.0 1.60959 1.36234 1.36234 0.00000 0.17717 0.17717

(v = 0.3; b/a= 1.0).

(1) qa4 � 10ÿ3=D; (2) qa2 � 10ÿ2; (3) qa.
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Table 8

Numerical results for a SFSF square plate subjected to a patch load and resting on Winkler foundation

h/a u=v w�1�

x=a � 0:5
y=b � 0:5

M�2�x
x=a � 0:5
y=b � 0:5

M�2�y
x=a � 0:5
y=b � 0:5

M�2�xy
x=a � 0:0
y=b � 0:0

Q�3�x
x=a � 0:0
y=b � 0:5

Q�3�y
x=a � 0:5
y=b � 0:0

K= 1.0

0.01 0.2 0.88771 1.22419 0.74085 0.00000 0.02309 0.00000

0.5 4.84432 5.18508 2.29314 0.00000 0.14032 0.00000

0.8 10.0239 9.68240 2.95652 0.00000 0.32775 0.00000

1.0 12.9591 12.1067 2.62639 0.00000 0.46058 0.00000

0.20 0.2 1.05995 1.22346 0.73768 0.00000 0.02298 0.00000

0.5 5.50703 5.18330 2.25719 0.00000 0.13942 0.00000

0.8 11.1810 9.69039 2.79913 0.00000 0.32428 0.00000

1.0 14.3658 12.1425 2.34449 0.00000 0.45732 0.00000

K= 3.0

0.01 0.2 0.52930 0.87430 0.65054 0.00000 0.01261 0.00000

0.5 2.78559 3.18855 1.80543 0.00000 0.08060 0.00000

0.8 5.54332 5.36922 1.98293 0.00000 0.19966 0.00000

1.0 6.98532 6.38743 1.42945 0.00000 0.29371 0.00000

0.20 0.2 0.63604 0.84954 0.64501 0.00000 0.01205 0.00000

0.5 3.07778 3.05869 1.77171 0.00000 0.07697 0.00000

0.8 5.90618 5.11354 1.87114 0.00000 0.19052 0.00000

1.0 7.34272 6.07408 1.22369 0.00000 0.28215 0.00000

K= 5.0

0.01 0.2 0.19103 0.51990 0.50244 0.00000 0.00148 0.00000

0.5 0.87402 1.24900 1.09725 0.00000 0.01860 0.00000

0.8 1.48569 1.40170 0.85981 0.00000 0.07642 0.00000

1.0 1.67925 1.31949 0.33852 0.00000 0.14175 0.00000

0.20 0.2 0.25596 0.48550 0.47423 0.00000 0.00122 0.00000

0.5 0.97002 1.13063 1.01519 0.00000 0.01610 0.00000

0.8 1.52072 1.26470 0.79417 0.00000 0.06768 0.00000

1.0 1.67130 1.20032 0.28289 0.00000 0.13389 0.00000

(v = 0.3; b/a= 1.0).

(1) qa4 � 10ÿ3=D; (2) qa2 � 10ÿ2; (3) qa.
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Table 9

Numerical results for a SSSS square plate subjected to a concentrated line load along x=a � 0:5 and resting on Winkler foundation

h/a v w�1�

x=a � 0:5
y=b � 0:5

M�2�x
x=a � 0:5
y=b � 0:5

M�2�y
x=a � 0:5
y=b � 0:5

M�2�xy
x=a � 0:0
y=b � 0:0

M�2�x
x=a � 0:0
y=b � 0:5

Q�3�x
x=a � 0:0
y=b � 0:5

K= 1.0

0.01 0.2 2.23724 6.09667 5.00118 ÿ1.20252 0.00000 0.08107

0.5 4.91491 10.3835 7.87894 ÿ2.82297 0.00000 0.18134

0.8 6.43463 12.3652 8.99956 ÿ3.90104 0.00000 0.23803

1.0 6.72902 12.7334 9.19212 ÿ4.12824 0.00000 0.24879

0.20 0.2 3.20900 6.09520 5.00065 ÿ1.20148 0.00000 0.08123

0.5 6.51277 10.3781 7.87166 ÿ2.82109 0.00000 0.18116

0.8 8.30303 12.3572 8.98577 ÿ3.89859 0.00000 0.23789

1.0 8.64523 12.71343 9.18757 ÿ4.12776 0.00000 0.24878

K= 3.0

0.01 0.2 1.89315 5.64756 4.55269 ÿ0.96805 0.00000 0.06029

0.5 4.12848 9.36044 6.86234 ÿ2.28521 0.00000 0.13393

0.8 5.37807 10.9946 7.64328 ÿ3.17605 0.00000 0.17446

1.0 5.61838 11.2934 7.76858 ÿ3.36551 0.00000 0.18199

0.20 0.2 2.70737 5.55412 4.46152 ÿ0.92688 0.00000 0.05713

0.5 5.37045 9.15332 6.66265 ÿ2.19047 0.00000 0.12626

0.8 6.77243 10.7227 7.38352 ÿ3.04724 0.00000 0.16440

1.0 7.03718 10.9977 7.50809 ÿ3.23180 0.00000 0.17158

K= 5.0

0.01 0.2 0.98758 4.43561 3.34474 ÿ0.36263 0.00000 0.00762

0.5 2.06236 6.61744 4.16078 ÿ0.89207 0.00000 0.01436

0.8 2.60683 7.33966 4.08047 ÿ1.29159 0.00000 0.01485

1.0 2.70637 7.45837 4.03867 ÿ1.38137 0.00000 0.01447

0.20 0.2 1.52789 4.22137 3.14104 ÿ0.31085 0.00000 0.00513

0.5 2.70561 6.18777 3.79375 ÿ0.76777 0.00000 0.00871

0.8 3.22352 6.81291 3.66873 ÿ1.11543 0.00000 0.00812

1.0 3.31355 6.90365 3.63325 ÿ1.19591 0.00000 0.00771

(v = 0.3; b/a= 1.0).

(1) Q0a
3 � 10ÿ3=D; (2) Q0a� 10ÿ2; (3) Q0.
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Table 10

Numerical results for a CCCC square plate subjected to a concentrated line load along x=a � 0:5 and resting on Winkler

foundation

h/a v w�1�

x=a � 0:5
y=b � 0:5

M�2�x
x=a � 0:5
y=b � 0:5

M�2�y
x=a � 0:5
y=b � 0:5

M�2�xy
x=a � 0:0
y=b � 0:0

M�2�x
x=a � 0:0
y=b � 0:5

Q�3�x
x=a � 0:0
y=b � 0:5

K= 1.0

0.01 0.2 1.05822 5.03622 3.94987 0.00000 ÿ2.42848 0.15100

0.5 2.14941 7.84246 5.46544 0.00000 ÿ5.13392 0.31077

0.8 2.57504 8.71005 5.73384 0.00000 ÿ6.23010 0.36925

1.0 2.61140 8.79803 5.75596 0.00000 ÿ6.32161 0.37304

0.20 0.2 2.06605 5.07437 3.98285 0.00000 ÿ2.08470 0.10733

0.5 3.83216 7.96667 5.50158 0.00000 ÿ4.53224 0.22876

0.8 4.56574 8.95973 5.71394 0.00000 ÿ5.70430 0.28178

1.0 4.66111 9.07654 5.70866 0.00000 ÿ5.86344 0.28800

K= 3.0

0.01 0.2 1.00458 4.92098 3.83506 0.00000 ÿ2.25473 0.13889

0.5 2.03329 5.59470 5.22160 0.00000 ÿ4.75794 0.28465

0.8 2.43132 8.40467 5.43589 0.00000 ÿ5.76511 0.33706

1.0 2.46515 8.48744 5.45327 0.00000 ÿ5.84864 0.34037

0.20 0.2 1.92123 4.88181 3.79209 0.00000 ÿ1.84180 0.09213

0.5 3.51534 7.55043 5.09920 0.00000 ÿ3.99628 0.19541

0.8 4.16303 8.43419 5.21533 0.00000 ÿ5.01964 0.23940

1.0 4.24595 8.53535 5.19720 0.00000 ÿ5.15715 0.24434

K= 5.0

0.01 0.2 0.75764 4.38295 3.29987 0.00000 ÿ1.46428 0.08402

0.5 1.49945 6.44293 4.09568 0.00000 ÿ3.05032 0.16682

0.8 1.77129 6.98913 4.06920 0.00000 ÿ3.65626 0.19224

1.0 1.79364 7.04820 4.06589 0.00000 ÿ3.70403 0.19347

0.20 0.2 1.37986 4.13184 3.05360 0.00000 ÿ0.97093 0.03908

0.5 2.34167 5.95560 3.59073 0.00000 ÿ2.08024 0.07968

0.8 2.68068 6.44159 3.38840 0.00000 ÿ2.57931 0.09332

1.0 2.71965 6.48711 3.33157 0.00000 ÿ2.64156 0.09408

(v = 0.3; b/a= 1.0).

(1) Q0a
3 � 10ÿ3=D; (2) Q0a� 10ÿ2; (3) Q0.
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these solution data. It has been demonstrated in this paper that the DQEM is simple in numerical
implementation, accurate in solution and more ¯exible than the global DQ method. Therefore it is a
very powerful solution tool for the problems of thick plates with discontinuities.
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