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Abstract

This paper deals with the static analysis of homogenous isotropic rectangular plates on Winkler foundation on
the basis of first-order shear deformation theory. An improved differential quadrature (DQ) method, called the
differential quadrature element method (DQEM), has been developed for this analysis. The plates considered are
subjected to a patch load or a concentrated line load, which are not solvable by the global DQ method. The
convergence and comparison studies are carried out to establish the reliability of the DQEM results. Then the
numerical results for different boundary conditions (i.e. SSSS, CCCC, S'S’S’S’ and SFSF) are presented showing
the parametric effects of dimensions of loading area/line, relative thickness ratio and elastic foundation modulus on
the deflection, bending and twisting moments, and shear forces at selected locations. Most of these data are new
and due to the high accuracy of the DQ solution they can be useful for benchmarking future work. © 1999 Elsevier
Science Ltd. All rights reserved.

1. Introduction

Among the various thick plate theories available today, the most widely used thick plate theory is the
first-order shear deformation theory, which was first proposed by Reissner (1945), and developed further
for dynamic problems by Mindlin (1951). A number of analytical and numerical methods for the
rectangular thick plates resting on an elastic foundation have been reported based on Reissner’s plate
theory (Frederick, 1957; Voyiadjis and Baluch, 1979; Svec, 1976) and Mindlin’s plate theory (Kobayashi
and Sonoda, 1989; Liew et al., 1996). Frederick (1957) presented an analytical solution using the Navier-
type and Levy-type series method. Voyiadjis and Baluch (1979) proposed an approximate approach for
solving a simply supported rectangular plate on Winkler foundation. Kobayashi and Sonoda (1989)
presented a Levy-type solution for the rectangular plates on Winkler foundations with two opposite
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simply supported edges, and two other edges being arbitrarily restrained. Svec (1976) studied the similar
problem by the finite element method. Malik et al. (1993) obtained the solution of uniformly loaded
circular plates resting on elastic half space using the differential quadrature method. Liew et al. (1996)
presented a differential quadrature solution to the rectangular Mindlin plates on Winkler foundation
with arbitrary combinations of boundary conditions. Moreover, the static analysis of rectangular plates
with elastic foundation based on other refined plate theories can also be found in literature (Henwood et
al., 1981, 1982; Yettram et al., 1984; Voyiadjis and Kattan, 1986).

All the above solutions, however, are restricted to plates subjected only to a uniformly distributed
load over the entire plate surface. Solutions to the thick plates with elastic foundations and subjected to
a patch load or a concentrated line load are scare in the open literature. Voyiadjis and Kattan (1990)
derived the governing equations for non-symmetrical bending of thick plates on elastic foundations
based on a refined plate theory. An infinite thick plate subjected to line and concentrated loads was
analyzed. However, this analytical solution is only applicable to very special cases. Even in the case of
the uniform loading on the entire surface of plate, the solutions are only possible for plates with two
opposite edges simply supported. Canisius and Foschi (1993) treated the similar problem by using the
finite strip method. Feng and Owen (1996) developed an iterative scheme for the coupled FE/BE
analysis of a plate—foundation interaction problem. A rectangular plate which freely rests on an elastic
half-space foundation and is subjected to a point load is examined. This iterative scheme can be done
within an integrated FEM/BEM software environment formed by merging the FEM and BEM
programs. However, the overall performance of the scheme depends largely on the choice of a free
parameter o and a matrix K; contained in the scheme. The approach on how to determine the optimal
value of « was not given in the paper. No other solutions have been found on the thick plates on
Winkler foundations involving the patch loading or concentrated loading. In particular, the results
presented by Liew et al. (1996) have shown that the differential quadrature method is highly efficient
and accurate for solving the bending problems of thick rectangular plates on Winkler foundation. This
numerical method was originated by Bellman and Casti (1972, 1973), and thanks to the efforts of Bert et
al. (1988, 1989), Striz et al. (1988) and Sherbourne and Pandey (1991), it is becoming increasingly
popular in the structural mechanics field (Liew and Liu, 1998; Liu and Liew, 1998a—b, 1999a—c). A
notable review paper on both the theoretical development and the application of the DQ method has
been published by Bert and Malik (1996). Unfortunately, however, this numerical method, by its very
basis, is only applicable to problems which should satisfy the continuity conditions (Striz et al., 1994;
Chen et al., 1997a, b; Bert and Malik, 1996). It can not be employed directly to solve the thick plates on
elastic foundation subjected to a patch load or other discontinuous loading conditions. Striz, Chen and
Bert developed the quadrature element method (QEM) to solve the bending of truss and beam (Striz et
al., 1994) and free vibration of thin plate (Chen et al., 1997a, b) having discontinuities and obtained
excellent solutions for these problems, but no solution has been provided for thick plates with
discontinuities. Han and Liew (1996) developed an improved technique, called the differential
quadrature element method (DQEM) for one dimensional bending analysis of the axisymmetric circular
Mindlin plate. Wang and Gu (1997) also developed one dimensional differential quadrature element
method (DQEM) for the thick beam analysis. Recently, Liu and Liew developed the two-dimensional
DQEM for static analyses of rectangular thick plates (Liu and Liew, 1998b) and discontinuous polar
plates (Liu and Liew, 1999b). Further, the method has been developed for the solution of free vibration
problems of the discontinuous shear deformable plates (Liu and Liew, 1999¢). The primary objective of
this paper is to develop this methodology for solving the bending problems of thick rectangular plates
on Winkler foundation. The domain decomposition technique is introduced to combine with the DQ
method for this analysis. The methodology developed here is different from the QEM since it is based
on different plate theory with different governing equations and only one grid point is employed to
represent the interface point between elements in which no J-grid arrangement is needed. The static
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responses of the moderately thick rectangular plates on Winkler foundation and subjected to a patch
load or a concentrated line load are carefully investigated for different boundary conditions to reveal the
effects of the dimensions of loading area/line, plate thickness and elastic foundation modulus on the
solution values.

2. Mathematical formulations

Consider a rectangular thick plate resting on a Winker foundation with side lengths a x b. The plate
is divided into Ng elements based on the discontinuities in the geometry, boundary constraints and
materials used. Each clement consists of an isotropic material, has uniform thickness and continuous
boundary constraints on each edge and is subjected to a continuously distributed load. For the /th
element, the thickness of the plate, Young’s modulus, shear modulus, Poisson’s ratio, and the load
intensity are represented by 4y, E;, G, v and ¢; respectively.

2.1. Basic equations
For a given element / as shown in Fig. 1, the equilibrium equations of a thick plate on Winkler

foundation are given in terms of the displacement components and based on the first-order shear
deformation plate theory as follows (Kobayashi and Sonoda, 1989):
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Fig. 1. Arrangement of grid points for element / on elastic foundation.
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w is the transverse deflection; . and y, are the rotations of the normal about the y-axis and x-axis
respectively; ky is the elastic foundation modulus; D; is the plate flexural rigidity and « (= 5/6) is the
shear correction factor.

The moments and shear forces are expressed as
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The boundary conditions for the sides of a rectangular plate can be divided into four kinds. Taking
side x = 0 for example, the boundary conditions are expressed as

1. Generalized hard simply supported sides (S):
w= 03 lpy = 05 M.\' = (Min)l; (6)
2. Generalized soft simply supported sides (S'):

w=0, M,=0 M= (MeXt)l; 7

X
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3. Clamped sides (C):

w=0, ¢¥,=0, ¢,=0; (®)
4. Generalized free sides (F):
Qx - (Q?(Xt)]s M, = (M?CXt)]e Mxy =0 (9)

where (M), and (Q%), are the concentrated external line moments and loads at the side x = 0.
2.2. Rectangular DOEM plate element on elastic foundation

Further dividing the /th element into N, x N, grid points along the x- and y-axis respectively and
applying the DQM rule (Liew et al., 1996), the equilibrium eqns (la)-(1c) can be discretized at each
discrete point on the inner grid of the element / as
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where F; = 6x(1 — vf)/hz, C™ and C(n)(; =1,2,3,..., Ny; s=1,2,3,..., N,) are the weighting coefficients
for the nth-order partial derlvatlves of w, . and yr, Wlth respect to the global coordinates x and y.

At the four edges of element /, the governing eqns (10a)—(10c) should be replaced by the boundary
conditions or compatibility conditions. If the edge is located at the sides of the plate, the boundary
conditions (6)—(9) are used, otherwise, the compatibility conditions should be employed.

The matrix form of eqns (10a)—(10c) can be written as

Ked® = f* (11)

in which K¢ d° and f° are defined as the element weighting coefficient matrix, element displacement
vector and element force vector, respectively, and
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(Ql\)ida (Ml\)id, (Mln){y (Qi)j/vd’ (M{C)Z/VJ’ (M{.)z/vda (Q()l/p (Mﬁ),/l, (Q();N‘ and (Mi)l/zv] (i=12,...,Ny
j=1,2,..., N,) are the combinations of the external forces and moments applied at the four edges of
element /, and the shear forces and moments produced by adjacent elements. The expressions of these
forces and moments are determined by the compatibility conditions given in Section 2.3. The coefficients
in K® are determined by eqns (10a)—(10c).

2.3. Assembling plate elements and compatibility conditions

An overall system of equations for all the nodal points of the plate labeled 1 to N should be
constructed first in order to obtain a complete solution for the whole plate. This can be simply
accomplished by assembling all the element weighting coefficient matrices, force and moment vectors
and displacement vectors. The final global matrix form of equation for the whole plate becomes

Kd =F (15)

where K, d and F represent the overall weighting coefficient matrix, global displacement vector and
global force and moment vector, respectively. The vector d is expressed as

d= [Wl’ W) i (93) o w2s W) ys (B ) oo ns (V) (‘//J’)N]T (16)

Obviously, at the interface boundaries of the elements, the displacement compatibility condition is
automatically satisfied since the same global nodal number is used for each conjunction node. Only the
equilibrium condition is needed to form the compatibility conditions between the interface boundaries of
the DQEM plate elements. Hence, according to the locations of conjunction nodes and the number of
the elements meeting at these nodes, the compatibility conditions are expressed as follows:

1. For nodes at which two elements meet

Suppose elements /; and /, are two adjacent elements as shown in Fig. 2(a) and (b). The compatibility
conditions for the conjunction nodes at the interface edge of element /;, and /, connected in the
x-direction can be written according to the equilibrium condition as
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Fig. 2. Locations of the conjunction nodes on the interface boundaries of elements: (¢) two elements are connected along x-axis;
(h) two elements are connected along y-axis; (¢) four elements are connected at point m.

1)y, —(0%),,=(02), (17a)
(M), — (M2), ;= (M), (17b)
(M“/Yl—")/vxj B (M{‘z‘>1J - (Megt)m (17¢)

The compatibility conditions for the conjunction nodes of elements /; and /, connected in y direction
can be obtained similarly as

(@), (@), - (@), .
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2. For nodes at which four elements meet

The compatibility conditions for the common node m of the four arbitrarily selected elements, /i, /5, /3
and /4 as shown in Fig. 2(c) can be expressed as

(@) y.w, + (@), = (@)1, = (23)1, = (), (19a)

(MQ)N\,,NJ, + (M%)Nl - (M{‘?)I,N). - (M,{?)l,l = (M,exm)m (19b)
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or expressed in terms of the y-components of force/moments at node m of the four elements in the
similar way.

3. For conjunction nodes located at the boundaries of plate

For the conjunction nodes located at the side boundary of the plate, both the boundary conditions
and the connection conditions should be considered. Take the side boundary x = 0 for example. The
following modified boundary conditions should be used:

e for clamped edge:

wn =0, ¥, =0, ¥, =0 (20)
e for hard simply supported edge:

W =0, Y, =0, (ML), + (M2, = (M), 1)
e for soft simply supported edge:

=0 (M) o+ (), = (), () o+ (), = (v), @)
e for free edge:

(001, +(05)1 = (@), (M), + (a2),, = (M)

m

(M'l‘l}’>1,1v‘. + (M“%’)l,l - (Ali);})m =

3. Numerical results and discussion

By assembling all the element weighting coefficient matrices, displacement and force vectors, and
considering all the compatibility and boundary conditions, a linear algebraic equation system is
obtained. It is solved using the standard linear equation system solver. The grid points are designated as
follows:

x; = g{l —cos [(i— DNy — D]} i=1,2,3,...,N, (24)

b
= 5{l—cos [ = D/(Ny = )]} j=1.23.....N, (25)

The solution procedures developed here can be employed to solve a variety of thick rectangular plate
problems with discontinuities in loading, geometry, material and boundary conditions. However, in the
following studies, the attention is only paid to the rectangular plates with an elastic (Winkler)
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Fig. 3. Loading cases considered for a simply supported rectangular plate: («) subjected to a patch load; (b) subjected to a concen-
trated line load.

foundation subject to two loading cases, i.e. a patch load and a concentrated line load. An illustration
of these two loading conditions has been given in Fig. 3(a) and (b) for a simply supported plate. The
number of the elements used in computations is 3 x 3 for the patch loading and 3 x 2 for the
concentrated line loading respectively. The boundary conditions considered are SSSS, CCCC, S'S'S'S’
and SFSF. The notation, for instance, SFSF denotes a rectangular plate with edges x =0, y = 0, x=a
and y =5, having simply supported, free, simply supported and free boundary conditions, respectively.

3.1. Convergence and comparison studies

To examine the validity and accuracy of the DQEM in solution of the problems considered in this
paper, the convergence and comparison studies have been carried out first. Table 1 shows the
convergence properties of the DQEM solution to a simply supported square plate on a Winkler
foundation under a patch load and a concentrated line load for different relative thicknesses. It is
evident that the rapid convergence can be obtained for both the thin (/e = 0.01) and the thick
(h/a = 0.20) plates. No significant effects of the //a ratio on the convergence rate of the DQEM results
for this plate foundation problem have been found. The convergence of the DQEM results for a square
plate on Winkler foundations with different boundary conditions under a patch load is presented in
Table 2. The grid points in each element are varying from 5 x 5 to 15 x 15. In Table 3, the convergence
of the DQEM results for the same plate subjected to a concentrated line load is illustrated. It is
observed from Tables 2 and 3 that in both loading cases, the DQEM solutions converged very fast with
the increasing number of the grid points in each element for all the boundary conditions considered,
namely the SSSS, CCCC, S’S’S’S’" and SFSF. Generally, for the patch loading, 7 x 7 grid points in each
element are able to produce a converged solution with at least 3 significant digits. When 9 x 9 grid
points are used, a solution converged to at least 4 significant digits can be obtained for all the boundary
conditions considered in Table 2. For the concentrated line loading, the convergence rate is slightly
slower than the one for the patch loading. A converged result to at least 3 significant digits can be
obtained by using 9 x 9 grid points in each element. Also observed is that the convergence rates for
different boundary conditions are slightly different. However, for all cases considered here, a very
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Table 1
The effects of plate relative thickness ratio on convergence of the DQEM results
Loading hla Grid w® MO M@ MQ) oY oy
points® x/a=0.5 x/a=0.5 x/a=0.5 x/a=0.0 x/a=0.0 x/a=0.5
y/b=0.5 y/b=0.5 y/b=0.5 y/b=0.0 y/b=0.5 y/b=0.0
Patch load 0.01 5x5 1.72234 2.44889 2.44889 —1.0505 0.08196 0.08196
(ula=v/b = 0.5) 7x7 1.77432 2.48078 2.48078 —1.08827 0.07993 0.07993
9x%x9 1.77460 2.48107 2.48107 —1.08839 0.07992 0.07992
11 x 11 1.77461 2.48110 2.48110 —1.08839 0.07991 0.07991
13x 13 1.77461 2.48110 2.48110 —1.08839 0.07991 0.07991
15x 15 1.77461 2.48110 2.48110 —1.08839 0.07991 0.07991
0.20 5x5 2.12217 2.40795 2.40795 —1.04108 0.07636 0.07636
7x17 2.12997 2.39537 2.39537 —1.04502 0.07617 0.07617
9%x9 2.13004 2.39565 2.39565 —1.040502 0.07614 0.07614
11 x 11 2.13004 2.39570 2.39570 —1.04502 0.07614 0.07614
13x 13 2.13004 2.39570 2.39570 —1.04502 0.07614 0.07614
15x 15 2.13004 2.39570 2.39570 —1.04502 0.07614 0.07614
Line load 0.01 5x5 3.73422 8.13628 6.20155 —2.04932 0.00000 0.18546
/b =0.5) 7x17 4.12001 9.33740 6.83322 —2.28902 0.00000 0.12818
9x%x9 4.12833 9.36985 6.86977 —2.28500 0.00000 0.13446
11 x 11 4.12844 9.35412 6.85777 —2.28516 0.00000 0.13373
13x 13 4.12838 9.36044 6.86234 —2.28521 0.00000 0.13393
1515 4.12838 9.36044 6.86234 —2.28521 0.00000 0.13393
0.20 5x5 5.28248 8.91742 6.60018 —2.14041 0.00000 0.13325
7x17 5.36898 9.14957 6.65354 —2.18868 0.00000 0.12646
9x%x9 5.37051 9.15376 6.67003 —2.19023 0.00000 0.12646
11 x 11 5.37045 9.15332 6.66265 —2.19047 0.00000 0.12626
13x 13 5.37047 9.15306 6.66614 —2.19053 0.00000 0.12627
15x 15 5.37047 9.15306 6.66614 —2.19053 0.00000 0.12627

Results are for a simply supported square plate resting on a Winkler foundation under a patch load and a concentrated line load
(K =3.0,v=0.3).
For patch loading: (1) ga* x 1073/D, (2) ga®> x 1072, (3) ga; and for concentrated line loading: (1) Qypa® x 1073/D; (2) Qpa x 1072;
(3) Qo.

# Grid points in each element.

satisfactory solution with the maximum 0.0036% discrepancy from the completely converged results can
be provided using 11 x 11 grid points in each element. Therefore, 11 x 11 grid points will be used for
each element to produce all the numerical solutions in the following studies. To examine the accuracy of
the present solutions, a comparison study has been given in Table 4 for cases in which the exact
solutions are available. Since no exact solutions have been found in the open literature for rectangular
plate with a foundation subjected to a patch load or a concentrated line load, the comparisons are only
conducted for some special cases (e.g., the uniformly loaded plate with Winkler foundation, and the
plate without the foundation but subjected to a patch load or a concentrated line load). The solutions
for these cases, of course, are computed using the same program. Excellent agreement is achieved
between present results and the exact solutions for all cases tabulated in Table 4. The reliability of
present solutions has therefore been confirmed.

3.2. Parametric studies

Based on the convergence and comparison studies above, the deflection, moments and shear forces of
a square plate with Winkler foundation and subjected to a patch load and a concentrated line load are
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Table 2
Convergence of the DQEM results for a square plate with different boundary conditions subjected to a patch load and resting on
Winkler foundation

Boundary Grid W) MO MO M oo 0%
conditions points® x/a=0.5 x/a=0.5 x/a=0.5 x/a=0.0 x/a=10.0 x/a=0.5
y/b=0.5 y/b=0.5 y/b=0.5 y/b=0.0 y/b=0.5 y/b=0.0
SSSS 5x5 1.85069 2.46571 2.46571 —1.06761 0.07936 0.07936
7x7 1.86502 2.45903 2.45903 —1.07721 0.07899 0.07899
9x%x9 1.86510 2.45927 2.45927 —1.07731 0.07895 0.07895
11 x 11 1.86510 2.45931 2.45931 —1.07731 0.07895 0.07895
13 x 13 1.86510 2.45932 2.45932 —1.07731 0.07895 0.07895
15x 15 1.86510 2.45932 2.45932 —1.07731 0.07895 0.07895
CCccC 5x5 0.91741 1.70600 1.70600 0.00000 0.13912 0.13912
7x7 0.92540 1.68740 1.68740 0.00000 0.13733 0.13733
9%x9 0.92532 1.68755 1.68755 0.00000 0.13716 0.13716
11 x 11 0.92531 1.68758 1.68758 0.00000 0.13715 0.13715
13x 13 0.92531 1.68758 1.68758 0.00000 0.13715 0.13715
15x 15 0.92531 1.68759 1.68759 0.00000 0.13715 0.13715
S'S’'S’S’ 5x5 1.93344 2.52992 2.52984 0.00000 0.11296 0.11317
7x7 1.96513 2.54176 2.54176 0.00000 0.11240 0.11236
9x9 1.96693 2.54344 2.54344 0.00000 0.11233 0.11233
11 x 11 1.96704 2.54357 2.54357 0.00000 0.11232 0.11232
13x 13 1.96704 2.54357 2.54357 0.00000 0.11232 0.11232
15x 15 1.96704 2.54358 2.54358 0.00000 0.11232 0.11232
SFSF 5x5 2.85175 3.16561 1.80407 —0.00069 0.08010 0.00000
7x7 2.86039 3.15632 1.79864 0.00002 0.07979 0.00000
9%x9 2.86045 3.15659 1.79898 0.00000 0.07975 0.00000
11 x 11 2.86045 3.15664 1.79903 0.00000 0.07975 0.00000
13 x 13 2.86045 3.15664 1.79904 0.00000 0.07975 0.00000
15x 15 2.86045 3.15664 1.79904 0.00000 0.07975 0.00000

(Fig. la, K = 3.0, v = 3.0, h/a = 0.1, u/a=v[b = 0.5).
(1) ga* x 1073/D, (2) ga* x 1072, (3) qa.
# Grid points in each element.

determined now for different boundary conditions. The boundary conditions considered here include the
SSSS, CCCC, S’S’S’S” and SFSF. The Poisson’s ratio is taken to be v = 0.3 for all cases. Table 5
presents the numerical results at several selected locations of the SSSS square plate with different
relative thickness ratio //a, non-dimensional elastic foundation parameter K (= a*k;/D) and dimensions
of the loading area u x v. It is observed that the normalized deflection, bending moments at the central
point of plate, twisting moment at the plate corner x = 0, y = 0, and shear forces at the mid-edges of
x=a/2 and y=5b/2 increase as the dimensions of the loading area u x v increase. When the value of
u X v becomes a x b, the solution becomes the one for the uniformly loaded plate. For the fixed values
of h/a and u x v, all the normalized deflections, moments and shear forces listed in Table 5 decrease as
the non-dimensional elastic foundation parameter K increases from 1.0 to 5.0. The influences of the
relative thickness ratio /s/a on the numerical results of the plate are also studied in this table. It is found
that for the fixed values of K and u x v, the normalized deflection increases when the relative thickness
ratio //a increases from 0.01 to 0.20, whereas the normalized moments and shear forces demonstrate the
different responses for different values of K. When K = 1.0, as the relative thickness ratio //a increases
from 0.01 to 0.20, all the normalized deflections, moments and shear forces remain nearly unchanged.
However, when the value of K increases from 3.0 to 5.0, the values of normalized deflections, moments
and shear forces decrease as the relative thickness ratio //a increases from 0.01 to 0.20. This reflects that
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Table 3
Convergence of the DQEM results for a square plate with different boundary conditions subjected to a concentrated load along
x/a = 0.5 and resting on Winkler foundation

Boundary Grid W) M MO M oo 0%
conditions points® x/a=0.5 x/a=0.5 x/a=0.5 x/a=0.0 x/a=10.0 x/a=0.0
y/b=0.5 y/b=0.5 y/b=0.5 y/b=0.0 y/b=0.5 y/b=0.5

SSSS 5x5 4.25324 8.73081 6.54878 —2.13085 0.00000 0.15403

7x7 4.43953 9.30140 6.79667 —2.25916 0.00000 0.13210

9x%x9 4.44214 9.30750 6.81607 —2.26073 0.00000 0.13186

11 x 11 4.44212 9.30625 6.80875 —2.26093 0.00000 0.13195

13 x 13 4.44213 9.30620 6.81213 —2.26100 0.00000 0.13194

15x 15 4.44213 9.30640 6.81035 —2.26102 0.00000 0.13194

CCccC 5x5 2.31011 6.95654 4.97835 0.00000 —3.97147 0.26198

7x7 2.42357 7.59865 5.19153 0.00000 —4.46168 0.24209

9x9 2.42335 7.60074 5.20495 0.00000 —4.45720 0.24038

11 x 11 2.42292 7.59883 5.19628 0.00000 —4.45512 0.24018

13x 13 2.42287 7.59870 5.19947 0.00000 0.45473 0.24015

15x 15 2.42287 7.59889 5.19767 0.00000 —4.45475 0.24015

S'S’'S'S’ 5x5 4.35769 8.69039 6.49219 0.00000 0.00000 0.22331

7x7 4.63582 9.44635 6.92984 0.00000 0.00000 0.20149

9%x9 4.65758 9.48765 6.98650 0.00000 0.00000 0.20029

11 x 11 4.66104 9.49167 6.98560 0.00000 0.00000 0.20012

13 x 13 4.66150 9.49218 6.98985 0.00000 0.00000 0.20008

15x 15 4.66153 9.49243 6.98815 0.00000 0.00000 0.20008

SFSF 5x5 6.49199 10.3545 5.12423 —0.00336 0.00000 0.15462

7x7 6.65321 10.8599 5.32248 0.00310 0.00000 0.13358

9%x9 6.65472 10.8661 5.34403 0.00037 0.00000 0.13333

11 x 11 6.65469 10.8649 5.33675 0.00009 0.00000 0.13343

13 x 13 6.65470 10.8648 5.34013 0.00005 0.00000 0.13342

15x 15 6.65470 10.8650 5.33835 0.00002 0.00000 0.13342

(Fig. 1b, K = 3.0, v = 0.3, hja = 0.1, v/b = 0.5).

(1) Qoa® x 107/D, (2) Qpa x 1072, (3) Qo
# Grid points in each element.

the shear deformation (corresponding to the increase of the relative thickness ratio A/a from 0.01 to
0.20) exhibits a tendency of enlargement of the deflection and reduction of the moments and shear
forces for plates with elastic foundations. And only when the value of non-dimensional elastic
foundation parameter K is big enough (K >1.0), the effects of the shear deformation on the moments
and shear forces become significant. The numerical results at several selected locations of the plate for
other boundary conditions such as the CCCC, S’S’S’S’ and SFSF under a patch load are tabulated in
Tables 6-8. The general trends of the variations of the normalized deflections, moments and shear forces
with the dimensions of loading area for CCCC, S’S’S’S’ and SFSF plates are similar to the SSSS plate.
However, it is interesting to note that for the SFSF plate, the bending moments at the central point of
plate increase first then decrease as the dimensions of loading area, u x v, increase from 0.2a x 0.2b to
a x b. The effects of the shear deformation (corresponding to the increase of the relative thickness ratio
hja from 0.01 to 0.20) also exhibit a tendency toward enlargement of the deflection and reduction of the
moments and shear forces. However, for values of certain elastic foundation modulus K (e.g. for the
CCCC with K = 1.0 and S'S’S’S’ plates with K = 1.0, 3.0), the shear deformation has the effect to
increase the moments and shear forces. This observation is in complete agreement with Kobayashi and
Sonoda (1989) for uniformly loaded rectangular plate on Winkler foundation. Tables 9—11 present the
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Table 4
Comparison studies of the DQEM solutions with exact solutions for the rectangular plates resting on Winkler foundations under
different loading and boundary conditions®

K bla Loading Boundary v/b hla W, M. M, O My
conditions
Patch load
0.0 1.0 (u=v) SSSS 0.2 0.01 0.43493 0.84964 0.84964 0.01667 —0.23875
Exact® 0.43455 0.84697 0.84697 — —0.23875
0.5 0.01 2.13348 2.94360 2.94360 0.10196 —1.33495
Exact® 2.13219 2.94504 2.94504 — —1.33495
0.8 0.01 3.70586 4.46438 4.46438 0.23808 —2.72893
Exact® 3.70389 4.46731 4.46731 — —2.72893
Line load
2.0 (u/a = 0.5) SSSS 0.2 0.01 6.18047 11.0098 6.686762 0.18611 —1.22788
Exact® 6.17553 10.4554 6.63869 — —1.22792
0.5 0.01 12.6333 17.9529 8.79775 0.36424 —3.36407
Exact® 12.6274 17.4849 8.69196 — —3.36401
0.8 0.01 15.7422 20.8258 8.90832 0.43408 —5.63844
Exact® 15.7353 20.3174 8.73863 — —5.63853
Pressure
3.0 1.0 (ufa = 1.0) SCSC 1.0 0.10 1.97589 2.27164 2.94078 0.23064 —0.77942
Exact® 1.976 2.272 2.941 0.231 —0.787
SFSF 1.0 0.10 7.07473 6.29951 1.36490 0.29129 0.00198
Exact® 7.075 6.300 1.366 0.291 —
SS’SS’ 1.0 0.10 3.60326 3.95818 3.90942 0.29615 —0.00134
Exact® 3.603 3.957 3.906 0.296 —

*For pach loading: W, = w. D/(1073 x ga*); My = My/(1072 x qa®); M yo/(107 x ga); Q. = Qum/(qa); M sy = M.y
(10_2 X qa 2); where w., and M, are the defection, bending moments at the plate center x = 0.5a, y = 0.5b; Q.,, and M, are the
shear force Q, at the mid-side of x = 0 and the twisting moment at the plate corner x = 0, y = 0.
For concentrated loading: W, = w.D/(1073 x Qoa®); M v = M/(1072 x Qoa); M o = M, /(1072 x Qpa); Q vy = Qum/Q0; My =
M /(1072 x Qoa).

® Exact solution obtained by using theoretical formulas based on the classical thin plate theory (Pilkey, 1994).

¢ Exact solution obtained by Kobayashi and Sonoda (1989) based on the Mindlin plate theory.

numerical results of a square plate subjected to a concentrated line load along the central line x = 0.5
under SSSS, CCCC and SFSF boundary conditions respectively. It is evident from these tables that as
the length of the loading line, v, increases from 0.2b to b, the central deflection, moment M,, and shear
forces increase for all these boundary conditions. The moment M, at the center of plate, however,
shows a different way of variation. That is, for some values of foundation modulus K and some relative
thickness ratio h/a (for SSSS and CCCC plates, when K = 1.0 or 3.0 and //a = 0.01, 0.20; and for
SFSF plate, when K = 1.0 and h/a = 0.01), the value of M, increases with v, whereas for some other
values of K and /i/a, it increases first and then decreases with the increasing value of v. As the relative
thickness ratio //a increases from 0.01 to 0.20, the central deflections for all the SSSS, CCCC and SFSF
plates increase. When K = 1.0, the moment M, and shear forces for the SSSS and SFSF plates
demonstrate very slight change in values, the moment M, for SSSS plate also shows a minimum
variation but for the SFSF plate, M, decreases with the increase of #/a. When K = 3.0 and 5.0, all the
moments and shear forces of the SSSS and SFSF plates decrease as the relative thickness ratio //a
increases from 0.01 to 0.20. For the CCCC plate, the trends of variations of the moments and shear
forces are very similar to those of plate subjected to a patch load. The effects of the elastic foundation
modulus K on the deflections, moments and shear forces of all the SSSS, CCCC and SFSF plates under
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Table 5

Numerical results for a SSSS square plate subjected to a patch load and resting on Winkler foundation

hla u=v w M ]V[g.Z) ]VI%) oY Q(\?

x/a=0.5 x/a=0.5 x/a=0.5 x/a=0.0 x/a=0.0 x/a=0.5
y/b=0.5 y/b=0.5 y/b=0.5 y/b=0.0 y/b=0.5 y/b=0.0

K=10

0.01 0.2 0.43391 0.84832 0.84832 —0.23806 0.01662 0.01662
0.5 2.12814 2.93673 2.93673 —1.33128 0.10163 0.10163
0.8 3.69622 4.45605 4.45605 —2.72231 0.23743 0.23743
1.0 4.05381 4.77504 4.77504 —3.23825 0.33729 0.33729

0.20 0.2 0.58241 0.84800 0.84800 —0.23790 0.01661 0.01661
0.5 2.64172 2.93515 2.93515 —1.33047 0.10156 0.10156
0.8 447511 4.45332 4.45332 —2.72089 0.23731 0.23731
1.0 4.88837 4.77203 4.77203 —3.23906 0.33686 0.33686

K =130

0.01 0.2 0.36624 0.76019 0.76019 —0.19190 0.01252 0.01252
0.5 1.77461 2.48110 2.48110 —1.08839 0.07991 0.07991
0.8 3.05800 3.64019 3.64019 —2.28020 0.19770 0.19770
1.0 3.34854 3.87501 3.87501 —2.74863 0.29323 0.29323

0.20 0.2 0.48386 0.74226 0.74226 —0.18383 0.01184 0.01184
0.5 2.13004 2.39570 2.39570 —1.04502 0.07614 0.07614
0.8 3.55525 3.49464 3.49464 —2.19883 0.19037 0.19037
1.0 3.87274 3.71598 3.71598 —2.65989 0.28463 0.28463

K=150

0.01 0.2 0.18821 0.52321 0.52321 —0.07264 0.00207 0.00207
0.5 0.84766 1.27788 1.27788 —0.45614 0.02371 0.02371
0.8 1.38961 1.51698 1.51698 —1.11909 0.09317 0.09317
1.0 1.50610 1.54013 1.54013 —1.45953 0.17685 0.17685

0.20 0.2 0.25270 0.48459 0.48459 —0.06237 0.00147 0.00147
0.5 0.94597 1.13359 1.13359 —0.39540 0.01911 0.01911
0.8 1.44778 1.31402 1.31402 —0.98973 0.08137 0.08137
1.0 1.55069 1.32770 1.32770 —1.31092 1.6203 0.16203

(v = 0.3; bla = 1.0).
(1) ga* x 1073/D; (2) ga® x 107%; (3) qa.

the concentrated line loading conditions are also similar to those under the patch loading conditions. All
the values of these parameters decrease with the increase of K since the elastic foundation becomes stiffer.

4. Concluding remarks

The first known two-dimensional differential quadrature element method (DQEM) has been developed
for the static analysis of rectangular thick plates on Winkler foundations based on the first-order shear
deformation theory. The approach developed here is a combination of the differential quadrature
technique and the domain decomposition method. The reliability of the DQEM solutions for the title
problem has been examined by the convergence and comparison studies. Very close agreement has been
achieved between present solutions and those obtained using analytical or other methods. The detailed
parametric studies have been carried out for the rectangular plates with different boundary conditions
on Winkler foundations and subjected to a patch load or a concentrated line load. The relations
between the numerical results for the deflection, moments and shear forces, and the dimensions of
loading area/line, relative thickness ratio and elastic foundation modulus have been well revealed by all
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Table 6

Numerical results for a CCCC square plate subjected to a patch load and resting on Winkler foundation

hla u=v w® MO M MQ) oY oY

x/a=0.5 x/a=0.5 x/a=0.5 x/a=0.0 x/a=0.0 x/a=0.5
y/b=0.5 y/b=0.5 y/b=0.5 y/b=0.0 y/b=0.5 »/b=0.0

K=10

0.01 0.2 0.20083 0.63955 0.63955 0.00000 0.03093 0.03093
0.5 0.84922 1.79196 1.79196 0.00000 0.17068 0.17068
0.8 1.23171 2.25508 2.25508 0.00000 0.33738 0.33738
1.0 1.26682 2.28865 2.28865 0.00000 0.43873 0.43873

0.20 0.2 0.35645 0.64648 0.64648 0.00000 0.02198 0.02198
0.5 1.40043 1.82878 1.82878 0.00000 0.12896 0.12896
0.8 2.07494 2.31724 2.31724 0.00000 0.28072 0.28072
1.0 2.16894 2.35299 2.35299 0.00000 0.38175 0.38175

K =30

0.01 0.2 0.19040 0.61726 0.61726 0.00000 0.02856 0.02856
0.5 0.80034 1.68997 1.68997 0.00000 0.15932 0.15932
0.8 1.15706 2.10163 2.10163 0.00000 0.31969 0.31969
1.0 1.18962 2.13024 2.13024 0.00000 0.42031 0.42031

0.20 0.2 0.32825 0.60948 0.60948 0.00000 0.01899 0.01899
0.5 1.26521 1.65830 1.65830 0.00000 0.11374 0.11374
0.8 1.85698 2.04976 2.04976 0.00000 0.25475 0.25475
1.0 1.93792 2.07103 2.07103 0.00000 0.35378 0.35378

K=350

0.01 0.2 0.14237 0.51347 0.51347 0.00000 0.01778 0.01778
0.5 0.57603 1.22110 1.22110 0.00000 0.10733 0.10733
0.8 0.81519 1.40227 1.40227 0.00000 0.23819 0.23819
1.0 0.83615 1.40901 1.40901 0.00000 0.33540 0.33540

0.20 0.2 0.22316 0.46694 0.46694 0.00000 0.00844 0.00844
0.5 0.76897 1.02834 1.02834 0.00000 0.05894 0.05894
0.8 1.06599 1.08969 1.08969 0.00000 0.15871 0.15871
1.0 1.10136 1.06478 1.06478 0.00000 0.24942 0.24942

(v = 0.3; b/a = 1.0).
(1) ga* x 1073/D; (2) ga® x 107%; (3) qa.
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Table 7

Numerical results for a S’S’S’S’ square plate subjected to a patch load and resting on Winkler foundation

hla u=v w® MQ M MQ) oY oy

x/a=0.5 x/a=0.5 x/a=0.5 x/a=0.0 x/a=0.0 x/a=0.5
y/b=0.5 y/b=0.5 y/b=0.5 y/b=0.0 y/b=0.5 »/b=0.0

K=10

0.01 0.2 0.43150 0.84298 0.84298 0.00000 0.02549 0.02549
0.5 2.12971 2.93571 2.93571 0.00000 0.14754 0.14754
0.8 3.72560 4.48211 4.48211 0.00000 0.31432 0.31432
1.0 4.10868 4.81613 4.81613 0.00000 0.40101 0.40101

0.20 0.2 0.63603 0.89632 0.89632 0.00000 0.02341 0.02341
0.5 2.93557 3.19962 3.19962 0.00000 0.13833 0.13833
0.8 5.03917 4.95894 4.95894 0.00000 0.30551 0.30551
1.0 5.52470 5.34162 5.34162 0.00000 0.41260 0.41260

K =30

0.01 0.2 0.36452 0.75614 0.75614 0.00000 0.01996 0.01996
0.5 1.77552 2.47981 2.47981 0.00000 0.11812 0.11812
0.8 3.07785 3.65609 3.65609 0.00000 0.26038 0.26038
1.0 3.38572 3.89860 3.89860 0.00000 0.34402 0.34402

0.20 0.2 0.51581 0.76993 0.76993 0.00000 0.01660 0.01660
0.5 2.30699 2.54861 2.54861 0.00000 0.10198 0.10198
0.8 3.89942 3.79011 3.79011 0.00000 0.23828 0.23828
1.0 4.26265 4.04989 4.04989 0.00000 0.33786 0.33786

K=350

0.01 0.2 0.18777 0.52185 0.52185 0.00000 0.00569 0.00569
0.5 0.84768 1.27690 1.27690 0.00000 0.04175 0.04175
0.8 1.39336 1.51762 1.51762 0.00000 0.11952 0.11952
1.0 1.51325 1.53869 1.53869 0.00000 0.23382 0.23382

0.20 0.2 0.25680 0.48722 0.48722 0.00000 0.00281 0.00281
0.5 0.97022 1.14891 1.14891 0.00000 0.02663 0.02663
0.8 1.49861 1.34456 1.34456 0.00000 0.09517 0.09517
1.0 1.60959 1.36234 1.36234 0.00000 0.17717 0.17717

(v = 0.3; b/a = 1.0).
(1) ga* x 1073/D; (2) ga® x 107%; (3) qa.
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Table 8

Numerical results for a SFSF square plate subjected to a patch load and resting on Winkler foundation

hla u=v w® MQ M MQ) oY oy

x/a=0.5 x/a=0.5 x/a=0.5 x/a=0.0 x/a=0.0 x/a=0.5
y/b=0.5 y/b=0.5 y/b=0.5 y/b=0.0 y/b=0.5 »/b=0.0

K=10

0.01 0.2 0.88771 1.22419 0.74085 0.00000 0.02309 0.00000
0.5 4.84432 5.18508 2.29314 0.00000 0.14032 0.00000
0.8 10.0239 9.68240 2.95652 0.00000 0.32775 0.00000
1.0 12.9591 12.1067 2.62639 0.00000 0.46058 0.00000

0.20 0.2 1.05995 1.22346 0.73768 0.00000 0.02298 0.00000
0.5 5.50703 5.18330 2.25719 0.00000 0.13942 0.00000
0.8 11.1810 9.69039 2.79913 0.00000 0.32428 0.00000
1.0 14.3658 12.1425 2.34449 0.00000 0.45732 0.00000

K =30

0.01 0.2 0.52930 0.87430 0.65054 0.00000 0.01261 0.00000
0.5 2.78559 3.18855 1.80543 0.00000 0.08060 0.00000
0.8 5.54332 5.36922 1.98293 0.00000 0.19966 0.00000
1.0 6.98532 6.38743 1.42945 0.00000 0.29371 0.00000

0.20 0.2 0.63604 0.84954 0.64501 0.00000 0.01205 0.00000
0.5 3.07778 3.05869 1.77171 0.00000 0.07697 0.00000
0.8 5.90618 5.11354 1.87114 0.00000 0.19052 0.00000
1.0 7.34272 6.07408 1.22369 0.00000 0.28215 0.00000

K=350

0.01 0.2 0.19103 0.51990 0.50244 0.00000 0.00148 0.00000
0.5 0.87402 1.24900 1.09725 0.00000 0.01860 0.00000
0.8 1.48569 1.40170 0.85981 0.00000 0.07642 0.00000
1.0 1.67925 1.31949 0.33852 0.00000 0.14175 0.00000

0.20 0.2 0.25596 0.48550 0.47423 0.00000 0.00122 0.00000
0.5 0.97002 1.13063 1.01519 0.00000 0.01610 0.00000
0.8 1.52072 1.26470 0.79417 0.00000 0.06768 0.00000
1.0 1.67130 1.20032 0.28289 0.00000 0.13389 0.00000

(v = 0.3; b/a = 1.0).
(1) ga* x 1073/D; (2) ga® x 107%; (3) qa.
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Table 9

Numerical results for a SSSS square plate subjected to a concentrated line load along x/a = 0.5 and resting on Winkler foundation

ha y D) MO MO MO MO oo

x/a=0.5 x/a=0.5 x/a=0.5 x/a=0.0 x/a=0.0 x/a=0.0
y/b=0.5 y/b=0.5 y/b=0.5 y/b=0.0 y/b=0.5 y/b=0.5

K=10

0.01 0.2 2.23724 6.09667 5.00118 —1.20252 0.00000 0.08107
0.5 4.91491 10.3835 7.87894 —2.82297 0.00000 0.18134
0.8 6.43463 12.3652 8.99956 —3.90104 0.00000 0.23803
1.0 6.72902 12.7334 9.19212 —4.12824 0.00000 0.24879

0.20 0.2 3.20900 6.09520 5.00065 —1.20148 0.00000 0.08123
0.5 6.51277 10.3781 7.87166 —2.82109 0.00000 0.18116
0.8 8.30303 12.3572 8.98577 —3.89859 0.00000 0.23789
1.0 8.64523 12.71343 9.18757 —4.12776 0.00000 0.24878

K =30

0.01 0.2 1.89315 5.64756 4.55269 —0.96805 0.00000 0.06029
0.5 4.12848 9.36044 6.86234 —2.28521 0.00000 0.13393
0.8 5.37807 10.9946 7.64328 —3.17605 0.00000 0.17446
1.0 5.61838 11.2934 7.76858 —3.36551 0.00000 0.18199

0.20 0.2 2.70737 5.55412 4.46152 —0.92688 0.00000 0.05713
0.5 5.37045 9.15332 6.66265 —2.19047 0.00000 0.12626
0.8 6.77243 10.7227 7.38352 —3.04724 0.00000 0.16440
1.0 7.03718 10.9977 7.50809 —3.23180 0.00000 0.17158

K=350

0.01 0.2 0.98758 4.43561 3.34474 —0.36263 0.00000 0.00762
0.5 2.06236 6.61744 4.16078 —0.89207 0.00000 0.01436
0.8 2.60683 7.33966 4.08047 —1.29159 0.00000 0.01485
1.0 2.70637 7.45837 4.03867 —1.38137 0.00000 0.01447

0.20 0.2 1.52789 4.22137 3.14104 —0.31085 0.00000 0.00513
0.5 2.70561 6.18777 3.79375 —0.76777 0.00000 0.00871
0.8 3.22352 6.81291 3.66873 —1.11543 0.00000 0.00812
1.0 3.31355 6.90365 3.63325 —1.19591 0.00000 0.00771

(v = 0.3; bla = 1.0).

(1) Qoa® x 107%/D; (2) Qoa x 107%; (3) Qo.
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Table 10

Numerical results for a CCCC square plate subjected to a concentrated line load along x/a =0.5 and resting on Winkler

foundation

ha y o MO MO MO MO o)

x/a=0.5 x/a=0. x/a=0.5 x/a=0.0 x/a=0.0 x/a=0.0
y/b=0.5 y/b=0.5 y/b=0.5 y/b=0.0 y/b=0.5 y/b=0.5

K=1.0

0.01 0.2 1.05822 5.03622 3.94987 0.00000 —2.42848 0.15100
0.5 2.14941 7.84246 5.46544 0.00000 —5.13392 0.31077
0.8 2.57504 8.71005 5.73384 0.00000 —6.23010 0.36925
1.0 2.61140 8.79803 5.75596 0.00000 —6.32161 0.37304

0.20 0.2 2.06605 5.07437 3.98285 0.00000 —2.08470 0.10733
0.5 3.83216 7.96667 5.50158 0.00000 —4.53224 0.22876
0.8 4.56574 8.95973 5.71394 0.00000 —5.70430 0.28178
1.0 4.66111 9.07654 5.70866 0.00000 —5.86344 0.28800

K =30

0.01 0.2 1.00458 4.92098 3.83506 0.00000 —2.25473 0.13889
0.5 2.03329 5.59470 5.22160 0.00000 —4.75794 0.28465
0.8 243132 8.40467 5.43589 0.00000 —5.76511 0.33706
1.0 2.46515 8.48744 5.45327 0.00000 —5.84864 0.34037

0.20 0.2 1.92123 4.88181 3.79209 0.00000 —1.84180 0.09213
0.5 3.51534 7.55043 5.09920 0.00000 —3.99628 0.19541
0.8 4.16303 8.43419 5.21533 0.00000 —5.01964 0.23940
1.0 4.24595 8.53535 5.19720 0.00000 —5.15715 0.24434

K =150

0.01 0.2 0.75764 4.38295 3.29987 0.00000 —1.46428 0.08402
0.5 1.49945 6.44293 4.09568 0.00000 —3.05032 0.16682
0.8 1.77129 6.98913 4.06920 0.00000 —3.65626 0.19224
1.0 1.79364 7.04820 4.06589 0.00000 —3.70403 0.19347

0.20 0.2 1.37986 4.13184 3.05360 0.00000 —0.97093 0.03908
0.5 2.34167 5.95560 3.59073 0.00000 —2.08024 0.07968
0.8 2.68068 6.44159 3.38840 0.00000 —2.57931 0.09332
1.0 2.71965 6.48711 3.33157 0.00000 —2.64156 0.09408

(v = 0.3; b/la = 1.0).

(1) Qoa® x 1073/D; (2) Qoa x 1077 (3) Qo.
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Table 11
Numerical results for a SFSF square plate subjected to a concentrated line load along x/a = 0.5 and resting on Winkler
foundation

hla v wh) MQ M@ M) MQ oY
x/a=0.5 x/a=0.5 x/a=0.5 x/a=0.0 x/a=0.0 x/a=0.0
y/b=0.5 y/b=0.5 y/b=0.5 y/b=0.0 y/b=0.5 y/b=0.5
K=10
0.01 0.2 4.54410 8.00778 4.45463 0.00001 0.00000 0.11394
0.5 10.9502 15.3878 6.44371 0.00001 0.00000 0.26699
0.8 16.8939 21.0549 6.49059 0.00000 0.00000 0.38540
1.0 20.7363 24.3507 5.71181 0.00156 0.00000 0.44090
0.20 0.2 5.63654 8.00420 4.43968 0.00028 0.00000 0.11363
0.5 12.8797 15.3818 6.36102 0.00010 0.00000 0.26492
0.8 19.3891 21.0644 6.22179 0.00014 0.00000 0.37393
1.0 23.5561 24.4297 5.27192 0.00081 0.00000 0.43456
K =30
0.01 0.2 2.72208 6.22805 3.99503 0.00001 0.00000 0.06074
0.5 6.37567 10.9413 5.35594 0.00001 0.00000 0.13517
0.8 9.49088 13.9056 4.87395 0.00000 0.00000 0.17605
1.0 11.3488 15.3355 3.82251 0.00156 0.00000 0.18147
0.20 0.2 3.48097 6.09983 3.96698 0.00028 0.00000 0.05817
0.5 7.47746 10.6351 5.27209 0.00010 0.00000 0.12779
0.8 10.6651 13.4504 4.67108 0.00014 0.00000 0.16303
1.0 12.5101 14.8327 3.49231 0.00081 0.00000 0.16470
K=50
0.01 0.2 1.00193 4.41904 3.23893 0.00001 0.00000 0.00464
0.5 2.12190 6.55991 3.75469 0.00001 0.00000 0.00289
0.8 277172 7.19087 2.96542 0.00000 0.00000 —0.01662
1.0 2.99234 7.17869 2.05126 0.00156 0.00000 —0.04025
0.20 0.2 1.54449 422625 3.08827 0.00028 0.00000 0.00386
0.5 2.76003 6.18671 3.52741 0.00010 0.00000 0.00187
0.8 3.35012 6.76680 2.78434 0.00014 0.00000 —0.01515
1.0 3.51724 6.79381 1.90160 0.00081 0.00000 —0.03730

(v =0.3; bla = 1.0).
(1) Qoa® x 107%/D; (2) Qoa x 107%; (3) Qo.

these solution data. It has been demonstrated in this paper that the DQEM is simple in numerical
implementation, accurate in solution and more flexible than the global DQ method. Therefore it is a
very powerful solution tool for the problems of thick plates with discontinuities.
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